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Abstract — Optimal design of electric machine based on 
FEM (Finite Element Method) calls for much longer 
computation time. In this paper, optimal design is implemented 
with randomly guided MADS (Mesh Adaptive Direct Search) 
and FEA (Finite Element Analysis) to compensate the excessive 
computation time. In addition, the proposed MADS coupled 
with FEA has been forwarded to Optimal design of Interior 
PM Synchronous Machine for Maximum Torque Per Ampere 
(MTPA). In particular, Randomly guided MADS has 
contributed to reducing the excessive computing time for the 
optimization process when compared with conventional MADS. 

I. INTRODUCTION 
Optimization algorithms applied to the optimal design of 

electric machines, which is characterized with the nonlinear 
magnetic saturation and has many local optima, have been 
focused on reducing computation time [1]-[3]. Thus, guided 
MADS has been implemented to compensate the excessive 
computation time to global optimum adaptively in the multi-
modal problems. 

This paper presents a randomized version of guided 
MADS. MADS is one of the direct search methods and 
generates random trial points to search the best local 
minima [4]. Whereas, the guided MADS modifies the poll 
points using the relationship of the previously computed 
trial points, which has contributed to reducing the 
computation time more effectively than MADS.  

The proposed randomly guided MADS has been applied 
to the optimal design of IPMSM for Maximum Torque Per 
Ampere (MTPA) with the many local optima requiring the 
much longer computation time. 

II. GUIDED MESH ADAPTIVE DIRECT SEARCH (MADS) 
MADS is a highly flexible local search method by 

blending the random selection rule in generalized pattern 
search (GPS) [5]. MADS is local search algorithm 
composed of the search step and the poll step. At the search 
step, MADS generates a number of trial points on the 
current mesh according to the fixed directions in a positive 
spanning set. At the poll step that follows, random points 
are generated to cover the whole current frame, i.e. a 
collection of the current unit meshes as components. It 
should be noted that the poll size parameter p

kD  should be 
equal to or larger than the mesh size parameter m

kD  for 
ensuring local convergence [6]. 

This paper proposes a new concept of heading direction 
in accordance with landscape shape for efficient local 
search, which is used as a reference direction for further 
randomly extended search. MADS is an iterative algorithm 

where at the k-th iteration a finite number of trial points are 
constructed from nD RÌ , a fixed set of Dn  directions 

scaled by a mesh size parameter m
k R+D Î . In general, each 

basis direction , 1, ,j Dd D j nÎ = L is set with coordinate 
directions which can be denoted in n-dimensional space as 
{ }, , 1, , .i ie e i n- = L  In case of the smooth cost landscape 
around the incumbent search point, MADS will have a 
higher chance to find an improved point along the most 
promising direction with multiple attempts. In this paper, 
the promising direction named heading direction is 
estimated with the current cost values. 

The heading direction at the k-th iteration is computed 
by a combination of the cost values of the current trial 
points. Figure 1(a) shows basis directions and the trial 
points 4,,1, L=ipi  generated around kx with a step length 

m
kD  in two dimensions. In Fig. 1(b), cost values are 

evaluated for each trial point and the heading direction is 
attained by a weighted sum of successful search directions 
as 
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strength of the i-th point. Then, kJ  is normalized to be a 
heading direction. In the successful poll step, m random 
points are generated with reference to kJ  and the best two 
trial points with the following relationship 
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where 1a  and  2a  are uniform random numbers between 
5.0-  and 0.5, and )1(d  and )2(d  denote the best and the 

second best trial points. The extended search with random 
trial points is carried out until no improved point is found. 
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(a) basis direction                (b) heading direction 

Fig. 1. Concept of estimating the heading direction with cost values  
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III. DESIGN CHARATERISTICS OF IPMSM 

A. Modeling of IPMSM considering magnetic saturation 
IPMSM has the distinguished rotor structure with PM 

buried interiorly, which causes the significant magnetic 
saturation. For reference, conventional d-q voltage and 
torque equations of IPMSM under the steady state operation 
can be represented as follows [7]. 
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The representative parameters of d-q flux linkages have 
been obtained numerically based of non-linear Finite 
Element Method at first, then are forwarded to the resultant 
torque equation which is formulated in Eq.(4), of which 
resultant torque is already validated by the directly obtained 
torque by Maxwell Stress Tensor.  

B. Design objective of IPMSM: MTPA 
This condition is useful for starting mode and starting 

torque is limited by allowable maximum current, not by 
voltage limit on account of low speed. Hence design 
objective for this condition is usually to be MTPA as 
follows using synthetic flux linkage ),( qd ll . In this paper, 
MTPA is selected as objective function in this optimal 
design of IPMSM. 
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C. Design variables and constraints 
In this paper, the purposely built IPMSM(11.3kW, 

1800rpm) has been applied for the optimal design. Under 
the fixed outline dimension maintaining the outer 
diameter(=90[mm])  and the axial length(=200[mm]), the 
design variables are selected as the side-PM length(X1) and 
thickness(X2), the horizontal-PM length(X3) and 
thickness(X4), angle between the side-PM and the 
horizontal-PM(X5), as shown in fig2. The other dimensions, 
such as the number of poles(=10) and slots(=45), the 
residual flux density of PM (Br=1[T]), the air-gap 
length(=0.8[mm]), and so on, have been fixed. In addition, 
the design constraint is the quantity consumed PM (cross 
section of PM is under 84mm2). 

 

 
Fig. 2. Design variables for the purposely built IPMSM 

IV. NUMERICAL VALIDATION RESULTS 
The well-known mathematical functions such as Branin 

function, is used to verify the effectiveness of the proposed 
randomly Guided MADS, of which are shown in Fig 3. The 
Brain function is a global optimization test-function having 
only two variables. 
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Fig. 3. Branin function and Result of convergence 

 

The function has three equal-sized global optima, and has 
the following definition 
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Where -5<x1<10, 0<x2<15, the global optima equal f(x1, 
x2)=0.397887 are located as follows: (-π,12.275), (π,2.275), 
(9.42478,2.475). 
  In terms of the function evaluation number, Randomly 
Guided MADS can generate the optimal design solution for 
IPMSM with fast convergence. Results of the Randomly 
Guided MADS compared with MADS and Optimal design 
for IPMSM will be minutely shown in Full-paper. 

V. CONCLUSION 

Through application of the proposed method to the 
optimal design of IPMSM requiring the huge computational 
time for FEA(Finite Element Analysis) and having many 
local optima, it will be shown that this method is very 
powerful to the multimodal optimization and appropriate for 
design of electric machine. 
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